
Functional Analysis for Existing Products: a
Detailed Procedure

V. A. Lentz, Bruce Lerner
Otis Elevator, a UTC Company

5 Farm Springs
Farmington, Connecticut, USA
860.676.5287 / 860.676.6149

Virginia.Lentz@otis.com
Bruce.Lerner@otis.com

Abstract. Functional Analysis (FA) for regenerative
systems is often executed as reverse engineering or
design recovery. The initial product developer
completed the Functional Analysis, and minimal
updates were required or took place as the product
evolved. The working definition of a function has often
become ambiguous. When the goal is to reify what the
product / system does, Functional Analysis is one
method to be used in conjunction with the identification
of the scenarios to support a system decomposition to
discover underlying functions. The scenarios identify
how the system / product is used by external systems (a
human or other man-made system) and FA helps to
expose the system behaviors that are required to support
that use, and the functions that are required to support
that behavior. The value of functional analysis is the
yield of the main and derived functions of the system /
product, which are the solution independent functions.
The separation of the domain functions from the
subsequently developed implementation functions
(those required to provide a design dependent
capability) facilitates the insertion of technology and
management of change.

The transition of the modular product structure Adifon
[ADI2001] from the Phase 1 team to the on-going
implementation required the clarification and
documentation of a procedure for Functional Analysis.
The generic part of that procedure is described here
with templates and detailed ‘user’ instructions.

THE FUNCTIONAL ANALYST

In many (new product) systems or product development
teams, functional analysis is performed at all levels of
the organization and by many different kinds of
engineers. In the regenerative product organization,
the system architect or the technologist performs
functional analysis. In both cases the analyst is
interested in the main, derived and implementation
functions. Most of the functional analysis, for
regenerative products is done in support of product line

modernization and product line engineering rather than
specific product engineering. The driver for the
performance of functional analysis for the main and
derived function is often technology innovation and the
need to 'remember' the reason for the particular existing
implementation functions. There is a moderate amount
of functional analysis performed with each product
generation in support of the articulation of new
implementation functions.

THE PROCEDURE

Procedure overview. An overview of the procedure is
presented in Figure 1.

Figure 1 Functional Analysis Task Flow

The trapezoids are inputs, the rectangles are activities
and the boxes represent deliverables. Decisions are not
shown for diagrammatic convenience.

Functional Analysis
Procedure

Existing
Product

Knowledge

Capture formal statement of
the function

Use Scenario Analysis to
expose functions

Expose Functions by re
engineering the existing

product(s) (includes feature list
analysis)

Function List Function List

Apply existing criteria, and new
criteria as needed, to group
Functions into function sets.

Independence
Axiom

Information
Axiom

Business
Considerations

Allocate Function sets to
physical modules according to

existing criteria and new
criteria as needed

Module list

Independence
Axiom

Information
Axiom

Product
Delivery

Considerations

Allocate Function sets to
physical modules according to

existing criteria and new
criteria as needed

Module listModule list

Independence
Axiom

Information
Axiom

Product
Delivery

Considerations

Scenario List Scenario List

Function set List

Allocate function sets to
segments

Independence
Axiom

Information
Axiom

Design
Considerations

Copyright Otis Elevator

CAUTION: Please note that while the process is shown
in a serial fashion for the sake of simplicity, it is NOT
SERIAL. We will iterate, even for a single function.

An engineer’s knowledge of the existing product often
predisposes the use of re-engineering rather than
scenarios. Both techniques should be brought into the
overall process by the variety of engineers working on
the product. Without scenario-based analysis, it can be
difficult to separate domain functions from
implementation functions.

Scenario Analysis. Use existing product knowledge to
develop scenarios that document the sequence of
activities to use the product / system. The user might
be the ‘consumer’ or the maintainer of the system /
product. This activity will identify the majority of the
main and derived functions. The authors define a main
function as a major function that directly contributes to
an Operational Scenario. These functions are unique in
that they are not duplicated, shared or reused in the
functional hierarchy A derived function is a function
that supports the functions at the next level up in the
decomposition. They are directly derived from higher
level functions and do not depend upon implementation
decisions.

 Some thoughts to consider for scenario analysis
include:
• For the initial activity, stay with the primary

scenarios. Following the path of alternative scenarios
can make it difficult to develop a working picture of
the system. After the paths of desired outcomes are
developed, add variations to expand the description
of product capabilities.

• For Scenario Analysis, the completeness of the
system behavior column is less of a concern than `the
completeness of the function column.

• Permit nested scenarios: In some cases the user
visible behavior or the system behavior might be to
‘initiate the ______ scenario’.

• A function at one level can break down into another
set of scenarios Æ and another level of scenarios /
Many times established ‘functions’ actually describe
system capabilities, a set of functions that yield a
behavior or implement a scenario.

The sequence of function execution is not represented
by the function list but is partially captured in the
scenario. The slavish pursuit of the sequence of
function execution is not critical to the activity of
exposing or grouping functions.

Advice to the novice: the most difficult part is getting
folks to think functions (what the system has to do to
effect the desired behavior) and not think the ‘current

solution’ (how we physically implement the function
today). The word ‘function’ has been severely abused
across the engineering community. Determining how
the various participants are using the word and coming
to agreement on the use of the word for the duration of
the architectural activity is a difficult task. Initially the
participants will not understand the need for or
appreciate the value of gaining a single understanding
of this pivotal word. Take the time, try to keep
everybody in the room during this activity, or you will
have to repeat it. For our purposes, the authors define
‘function’ as a characteristic task, action or activity
that, when performed, contributes to achieve a defined
outcome. One or more of the following may implement
a function: equipment (hardware), software, firmware,
personnel or procedural data.

Reengineering. It is frequently easier for legacy
engineers to work backwards from the current
implementation or a series of implementations to the
function(s). Let them! Exploit the knowledge of these
engineers and facilitate the sessions where they use
existing product knowledge to analyze the product
components to identify the functions performed by the
component. Reverse engineering is particularly useful
to identify the implementation functions. We define
implementation functions as those functions in the
functional hierarchy that support Derived Functions but
only exist due to implementation decisions. They are
not directly derived from higher-level functions.

 Some thoughts to consider for reengineering include:
• Look for different terms that have grown up over the

years that really mean the same thing (the same
capability, same functionality), and if necessary what
are the subtle differences between the evolved use of
the terms. Are these several different ways of
describing the same things or do subtle differences
exist? This activity is particularly important for
global companies that have grown through mergers &
acquisitions and are consolidating the architectural
description of a variety of legacy products.

• Perhaps 60% -70% of the functions a team needs to
look at will be implementation functions. Tracing the
implementation functions to the product decisions
that required the implementation function enables
better technology insertion decisions in the future.

Capture the statement of the function. A function is a
characteristic task, action or activity that, when
performed, contributes to achieve a defined outcome.
The statement is typically a verb then noun ….

The trick is to get the team to articulate the domain
functions, the generic statement of the customer driven
functions – independent of the implementation for any
particular product line

Some thoughts to consider for stating the function
include:
• Use a specific example then generalize to the generic

function. Use another specific example from a
different product to test the generic statement. By
about the third specific example, the result is generic.

• Make a note of the different classes of products
within a product line,- go through the initial exercise
with one class in mind, - then map to the other classes
of products. In general, for this level of analysis (at
the main / derived functional level), the differences
should disappear. The differences in requirements
for the other classes might provide the rationale for
the differing implementation function. They will
provide the rationale for the differences in the
physical instantiation of the implementation function.

How does the team know they are done exposing
functions? When they have completed the architectural
initiative and all the enterprise participants are using the
result. However, this is an iterative process. Do
enough to get started, work through the rest of the steps
and then come back, as you need to. The 1st pass is
complete when a rich set of functions is available for
allocation. As the team works through the remaining
activities of functional analysis and continues applying
the rest of the systems engineering methods to support
delivery of the product, additional functions may be
required.

Group Functions to Function Sets. The authors define
function sets as sets of functions (or function sets)
grouped using defined design principles and trade-offs
to support system implementation goals. Affinity
Grouping based on the team’s knowledge of the
functions and the product was the initial step.
Validation of the groupings applies criteria based on the
information and independence axioms as postulated by
Nam Suh [SUH1990]. We found that both grouping and
separation criteria were needed to overcome the
tendency to group to a monolithic set.

Function to Function Set grouping criteria:
¾ Independence Axiom

♦ Minimize external functional dependencies
♦ Maximize testing independence (greater

coupling within than without)
♦ Maximize opportunity to innovate/improve

within the Function Set without impacting
other Function Sets

¾ Information Axiom
♦ Maximize functions with similar data needs

Function to Function Set separation criteria:
¾ Independence Axiom

♦ Minimize differing customer sets
♦ Minimize differing source of requirement

¾ Information Axiom
♦ Minimize the information scope

Group Function sets to Segments. There is a larger
grouping of the function sets that facilitates product
development. For the purpose of not confusing this
grouping for product development with the extant
subsystem terminology for product delivery, we chose
the word ‘segment’. This provides for the optimization
of development entities around main functions. The 7
plus or minus 2 rule applies to the results of the
grouping. There might be a tendency with the first
architectural initiative to group things according to the
engineering disciplines of mechanical, electrical and
software. RESIST. The result of applying this
particular set of constraints will be sub optimization and
a conflict of the axiomatic design principles. Using
the information and independence axioms as postulated
by Nam Suh, group the function sets into segments.

Function Set to Segment grouping criteria:
¾ Independence Axiom

♦ Minimize external functional dependencies
♦ Maximize testing independence (greater

coupling within than without)
♦ Maximize opportunity to innovate / improve

within the Segment without impacting other
Segments

¾ Information Axiom
♦ Maximize functions with similar data needs

Function Set to Segment separation criteria:
¾ Independence Axiom

♦ Minimize differing customer sets
♦ Minimize differing source of requirement

¾ Information Axiom
♦ Minimize the information scope

In addition to Nam Suh's axioms, additional criteria
were applied to address business goals for the system.
To further combine and separate the functions in a
function set the authors added:

Function Set to Segment grouping criteria:
¾ Management to meet business goals

♦ Maximize speed of development and
introduction

♦ Maximize control of cost and quality

Function Set to Segment separation criteria:
¾ Focus to meet business goals

♦ Maximize focus for development of a
corporate capability in the functional area

♦ Maximize defined responsibility
♦ Maximize ability to manage scope of

responsibility

These business criteria reflect company priorities and
may need to evolve to address current technologies,
external regulations etc.

Sanderson, in a 1998 Management Roundtable
[SAN1998] provided guidance on mapping patterns of
model evolution. The criteria included model variety
and the rate of technological change. This technique
enables the analysis to support the business criteria for
innovation and different customer sets. The map is a
simple grid as shown in Figure 2.

Figure 2 Mapping patterns of model evolution

For the elevator community, the infrastructure
components are things the passenger doesn’t see. They
include rails and car frames (think heavy metal).

The regulated components tend to have more models,
since the regulations have developed independently in
different parts of the world. Regional variations are
required. External safety driven product regulation
becomes a business criteria due to the generally
extensive (and expensive) testing and product
qualification for these elements. The business need is
to either manage the change to minimize the re-
qualification required or to make major upgrades on a
cyclic basis as a group of changes. Another option is to
reduce the number of models supported. Understanding
the function of the module / component facilitates
making these decisions.

The electronics and computing platforms are changing
at a rate greater than the vertical transportation industry
chooses to incorporate. The design decision that moved
from ‘relays’ to ‘computer-assisted controls’ identified
these items as implementation functions. Software is

pervasive in regenerative products and is dynamic. It is
frequently still easiest to change software to fix a
problem, or increase the capability of the product. The
model variety may be a production factor more than an
engineering factor, but software is frequently
parametrically adjusted to an individual installation
rather than being identical across multiple installations.

The customer visible parts of regenerative products are
also very dynamic. While General Motors might reuse
transmissions across the product lines, the bodylines
and interiors are unique to the specific company and
perhaps even within the models. For elevators, the
elements having many models and finishes are those
seen by the passenger; the cab interiors and fixtures.
The architectural trick is to group the things together
that are customer visible, and minimize the impact of
changes in that area to the underlying elements. So yes
we do have a couple modules that group ‘things that are
important to the passenger’. We call it aesthetics. The
model variety in this area is extensive. The Building
architects frequently want a particular look. The
perception of beauty varies significantly around the
globe. Global industries need an architecture that will
accommodate this variety.

The other set of needs to be addressed for grouping
function sets to segments are Design constraints that
were represented as gray arrows on Figure 2 in Adifon
[ADI2001]. The methods for shipping and installation
of a product and their associated constraints (size,
manufacturing techniques and locations) that are
needed to ship and install a product will affect the
allocation of functions to modules

Allocate function sets to physical modules. Again,
applying the information and independence axioms as
postulated by Nam Suh, along with a few additional
guidelines, allocate the one or more function sets to top-
level physical entities (modules). Module Guidelines:
• Elements in a Segment (product development) that

are in different Subsystems (product delivery) must
be in different Modules

• Elements in different Segments must be in different
Modules

• Maximize the flexibility to 'scale' implemented
Modules to cover the product range.

Apply product delivery considerations e.g.
manufacturing sources, installation processes to further
refine the allocation of one or more function sets to
physical entities. At this level the mapping is probably
going to be constrained by manufacturing processes.
For elevators we have another step in that final
assembly of the product is in the building elevator shaft.
Thus we also need to consider the shipping packages

and installation units when mapping to the physical
architecture.

The Generic statement of the function is what enables
the team to get to the ‘platforms’, the scalable, reusable
across product lines pieces of the enterprise products

Some thoughts to consider for functional allocation to
the physical architecture include:
• Not all of the resulting modules need to be in the

same product. Some modules will support the very
low end of the product line, and other will support the
very high end. Typically 80% of the modules will be
in a specific item in the product line.

• The interfaces for factory decisions will vary by
product and possibly by factory

• Not all ‘replication of functions’ based on the
scenario analysis will be synthesized. There might be
some repetition of monitor health, detect degradation,
failure functions in multiple parts of the system.
There might be some level of aggregation of
functions that store, report and ‘manage’ the
collection of health and failure data for the various
segments.

• In the same manner that the function sets were
grouped into segments to facilitate product
development, the physical modules that are the
juncture of the function sets and a physical package,
will be grouped into subsystems to facilitate product
delivery. This will probably require iteration of the
grouping of functions to function sets.

• One rule that might drive a team back to the activity
for exposing functions is that a function set shall not
be shared among physical entities.

• In doing the functional synthesis, we want a stable set
of modules, however, we often end up wanting to
group things together based on what is in a scenario.
The Caution is that Industry data tells us that
solutions that slavishly follow the functional or
operational architecture are terribly inefficient. Use of
the independence and information axioms can
alleviate this inefficiency. Another issue is the
decreased ability to 'share' implementation functions.

The Result. The team now has a robust architecture. It
provides an effective base for research and development
that facilitates the reuse of existing supply chains. The
enterprise is now in a position to perform up front
planning of generation changes at the module /
component level. As the technology matures we can
decide to provide additional capability to the customer
or returns to the enterprise. The release of a new
product can then become the integration of proven
components.

Don’t underestimate the effort to follow through. There
is resistance & roadblocks from legacy engineers, from
factories, and other parts of the organization. This is
CHANGE – if only evolution.

THE DELIVERABLES

The deliverables of the functional analysis and
decomposition activity include a scenario list, a
function list, the list of function sets and the list of
modules. There are no physical widgets yet.

The Scenario List. For documenting scenarios: the
user visible behavior and the system behavior will
typically start out representing a solution within the
product range. The functions will, at the first pass, also
represent a specific implementation.

A scenario description template is provided.
P1: Scenario Title
<<Description of the scenario>>
P1a: Scenario sub-Title

Step

User Visible
Behavior

System
Behavior

Functions

1
2
3

Figure 3 Scenario Description Table
The Function List. Information to capture about each
function:
- Name
- Description
- Type: main, derived, implementation
- Source: scenario, 'parent', module/component
- Part of Function Set: (can be linked in tool)
- Inputs: needs from other functions
- Outputs: provides to other functions

Two templates are provided for documenting functions.

Name:
Spin

Type:
Implementation

Source:
Scenario 23

Description: Do the hoochy-kootchy

Part of Function Set: Dance

Name: Input /
Output

Description

The Beat I
Motion O Spin yourself around

For Functions exposed by reverse engineering existing
‘components’ we add:

<<Existing component>>

Intended Outcome: Unintended Impact:
Coolness Dizziness

The second template was suggested by Ed Crawley
[CRA2001].

Form Function Process Other
Forms

Toaster Char Bread Breakfast Oven
Hose
Nozzle

Water
Lawn

Beautify
Yard

Sprinkler

The Function Set List. Link the function set to the
contributing functions. This is a simple list.

The Module List. For each module in the list provide:
• Module Name. Augment with a description of the

module.

• Module functionality. This is a table of the function
sets allocated to this module

• The Module Interface. This includes a description of
each link end that connects this module to other
modules. Standard items for a link end description
includes:

• Headline: << a unique designator for this link
end>>

• Type: Software links / Electrical links (will
typically have mechanical characteristics) /
Mechanical link

• Level: Controlled - will be controlled by systems
engineering / Identified - is only identified by
systems engineering
Connects To: Name of module where the link
end physically ‘connects to’.

• Description: Description of link end.
• Item ID: Identification of item that crosses the

link end.
• Item Description: Description of item.
• From/To Module: Name of the module

connected by the functional link carrying the
item.

• Encodes Items: Y: items are encoded in this
link. / N: no encoded items

Type: SW Level: Controlled Connects
To:

E: Computing
 Platform

Description: Communication to other modules
through the Computing Platform.

Items That Cross the Link End
Item ID Item Description From/To

Module
Encodes
Items

Software
Bus
Message

A message that
is sent or
received from
the Computing
Platform.

From/To
Computing
Platform

Y

Specifi-
cation:

This link end does not provide anything to
the link – it only uses capabilities of the
Computing Platform. Therefore, there is no
detailed specification here.

Figure 4 Link End Description

The most effective presentation for the set of modules is
a matrix with the modules included in the cell
identifying the source segment and the associated
subsystem for product delivery.

The Module Matrix has been well received and
referenced.

Figure 5 Module Matrix

TOOLS

Sanderson and the Software Productivity Consortium
both emphasize the need for an enabling information
technology infrastructure to support an architectural
initiative of this kind and the subsequent product
development. You can use MS Word or MS Excel, it is
however cumbersome and time consuming to specialize
them to Systems Engineering's needs. Using a tool such
as CORE by Vitech greatly facilitates the linking and
production of reports. Just having tools is not sufficient
unless all of engineering can access these tools in real-
time. The communications bandwidth among

engineering teams and centers is equally important.

Microsoft Office tools were initially used to capture
data for this process. As the data set grew, information
was captured in CORE from Vitech Corporation.
This class of tool allows for the graphical capture of
scenarios, the text capture of element descriptions and
attributes and the programmatic capture of links
between elements. They are flexible enough to allow
for customization to corporate terminology and schema.
Once the data has been entered, general and specialized
reports can be extracted from this single, central data
store. Data entry errors decrease, as does the time
required for report generation. Tool shortcomings fall
in two areas: data exchange and visualization. Data
exchange is typically a unidirectional, batch process,
which requires planning to optimize the appropriate
transfer level to minimize churn. The visualization
issues include control of color and layout of the existing
representations and the relatively limited set of views
available to satisfy audiences expecting animated
PowerPoint.

FUTURE PROCESS CLARIFICATION

The authors were driven to clarify the functional
analysis process for existing products to enable other
engineers in the organization to apply the procedure
consistently. Yes, the authors have a list of other
procedures that need to be clarified. . Further work is
needed in the following areas:
• How do we capture the decisions (the alternate paths)

within the scenario table and the functional flow
block diagrams (with ‘and’ and ‘or’ gates)

• Do we need to capture different things for the
implementation functions: intended function /
unintended function. This information will later be
useful in analyzing emergent properties and for
technology insertion

REFERENCES
[ADI2001] Adifon et al, "Validating a Commercial

Product Architecture." Proceedings of the 11th
Annual International Symposium of INCOSE,
Melbourne, Australia, 2001.

 [CRA2001] Crawley, Ed MIT 2001 “Introduction to
System Architecture” Course ESD.34

 [SAN1998] Sanderson, “Managing Product Families:
Product Architecture and Modularity, The
Management Roundtable, 1998.

[SPC1996] Software Productivity Consortium, 'Product
-Line Management and Engineering Course", SPC-
96006-MC version 01.00.05 June 1996

[SUH1990] Suh, Nam P., The Principles of Design,
Oxford University Press, 1990

BIOGRAPHIES

V. A. Lentz is responsible for Program Management
for Otis Elevator Company. She has been with United
Technologies since 1996. Her favorite topic is the use
of Systems Engineering in commercial enterprises.
Prior to UTC, she spent 30 years at IBM Federal
Systems, LORAL, Lockheed Martin building large,
unprecedented computer-based systems such as Global
Positioning System Control Segment. She was also
responsible for Systems Engineering Technology,
Process and Training. Ms. Lentz was President of
INCOSE in 1996, a recipient of the Founders Award in
1999, and represents UTC on the INCOSE Corporate
Advisory Board.

Bruce Lerner is a Principal Systems Engineer with
Otis Elevator, a United Technologies Company. He has
been at Otis since 1986, managing Software
development for embedded communications and
control, leading Software Process Improvement
activities and spearheading the deployment of Systems
Engineering. Mr. Lerner is a member of INCOSE
(Constitution Chapter Treasurer) and the IEEE
Computer Society.

